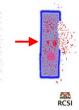


FANTASTIC BUGS... ...AND WHERE TO FIND THEM

Safe Patient Care Course Roisin Connolly Antimicrobial Stewardship Fellow, Beaumont Hospital 3rd September 2019

OUTLINE

- 1. Back to basics: "Fantastic bugs"
- 2. Host- pathogen wars
- 3. Colonisation or infection?
- 4. Resistant bacteria & where to find them

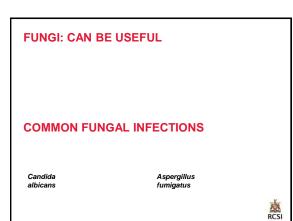

RCSI

BACK TO BASICS: "MICRO-ORGANISMS"

- Parasites
- Fungi
- Viruses
- Bacteria
- AKA
 - "Bugs"
 - "Germs"

VIRUSES

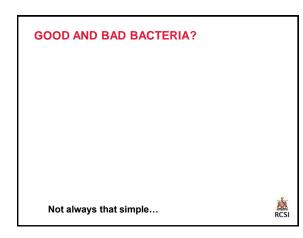
- · Can only multiply within a living cell
- · Turn host cell into 'virus factory'
- · Host cell is then killed
- Some viral infections are <u>controlled</u> rather than eliminated



RCSI

- E.g. Cold sores, chicken pox

COMMON VIRAL INFECTIONS


- Norovirus Gastroenteritis
- Hepatitis A virus
- Influenza 'flu' virus
- Rhinovirus common cold virus
- Herpes simplex cold sore virus
- · Varicella zoster chicken pox and shingles virus
- · Blood-borne viruses: Hepatitis B, C, HIV

BACTERIA

 10 times more bacteria in/ on us than cells belonging to us

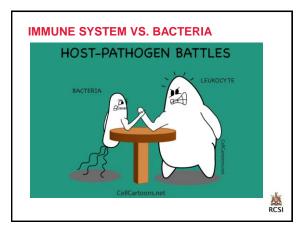
- Normal flora ("colonisers")
- 1g faeces = 100 billion bacteria!

HOW DO BACTERIA CAUSE INFECTION?

- · Stick to or enter human cells
- · Destroy tissue
- Produce toxins:
 - E.g. C. difficile toxin

HOW DO MICROORGANISMS GET AROUND?

- 1. Contact/ Touch e.g. MRSA, VRE
- 2. Droplet inhalation e.g. influenza
- 3. Aerosol inhalation e.g. TB
- 3. Ingestion (food or water or contaminated droplets or aerosols) e.g. salmonella


RCSI

RCSI

- 4. Blood-borne e.g. HIV, hepatitis B&C
- 5. Vertical (mother-to-child via placenta) e.g. $\ensuremath{\mathsf{HIV}}$
- 6. Sexual transmission e.g. chlamydia
- 7. Arthropods (mosquitoes, ticks etc.) e.g. malaria
- 8. Animals e.g. brucellosis

HOW DO MICRO-ORGANISMS GET AROUND IN HOSPITALS?

- 1. Contact: MRSA, VRE etc.
- 2. Droplet: influenza, RSV
- 3. Aerosols: TB

IMMUNE SYSTEM VS. BACTERIA

- We are protected from bacterial invasion by our immune system:
 - Normal skin barrier
 - Normal bowel lining
 - Properly functioning immune cells: white blood cells
- Defective immune system predisposes a person to developing infection

IMMUNE SYSTEM VS. BACTERIA

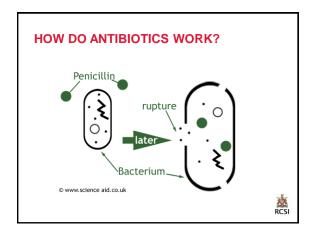
· How can harmful bacteria be destroyed?

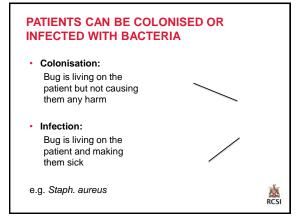
 Normally functioning white blood cells "munch" on harmful bacteria: phagocytosis

- Antibiotics

RCSI

RCSI


WHAT CAUSES A WEAKENED IMMUNE SYSTEM?


- Damage to the skin barrier: burns, wounds, devices
- Major illness: trauma, sepsis, surgery
- Cancer: leukaemia
- Chemotherapy: attacks cancer cells and good cells
- Medications that suppress over-active immune
- systems
- Malnutrition
- Diabetes
- Drugs/ alcohol
- HIV

FIGHTING BACTERIAL INFECTION

• Bacteria will take any opportunity to invade the body and cause infection

- · Outcome depends on:
 - Immune system's ability to fight infection
 - Virulence of the bacteria
 - Early recognition of infection
 - Timely and appropriate antibiotics
 - Supportive treatments

HOW DO BACTERIAL INFECTIONS DECLARE THEMSELVES?

Non-specific symptoms

- · High temperature or low temperature
- Generally unwell
- Confusion
- High WCC

Symptoms localised to site of infection

- Dysuria pain on urination
- Diarrhoea
- Cough
- Redness or pus at a wound site

MULTI-DRUG-RESISTANT BACTERIA

- · Bacteria that antibiotics don't work against
- May also be referred to as "antibioticresistant bacteria"

RCSI

RCSI

MULTI-DRUG-RESISTANT BACTERIA

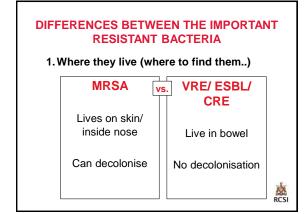
- MRSA: Meticillin-resistant Staphylococcus aureus
- VRE: Vancomycin-resistant Enterococci
- ESBL: Extended-spectrum β-lactamase- producing Enterobacterales
- CPE: Carbapenemase-producing Enterobacterales

WHY DO RESISTANT BACTERIA MATTER?

• If a patient gets an **infection** with one of these bacteria, it can be very difficult to treat

MRSA VRE

CRE

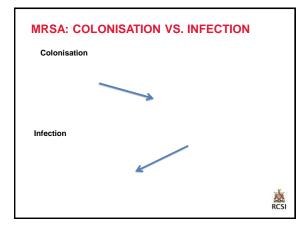

RCSI

WHAT PUTS PATIENTS AT RISK OF

- RESISTANT BACTERIA?Previous antibiotic therapy
- Nursing home residents
- · Multiple/ prolonged hospital admissions
- Extremes of age
- Chronic disease
- ImmunosuppressionInvasive devices

DIFFERENCES BETWEEN RESISTANT BACTERIA

2. The kind of infections they cause


- MRSA causes cellulitis, wound infections, septic arthritis
- VRE may cause central line infections/ UTIs/ intra-abdominal infections
- ESBL- producing organisms and CPE cause mainly UTIs and intra-abdominal infections
 - $\circ\,$ In some cases these can be very severe ("Gram negative sepsis")

RCSI

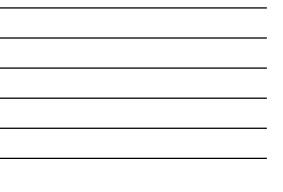
RCSI

MRSA: METICILLIN-RESISTANT S. AUREUS

- · Lives on skin and inside nose
- Many people may be colonised
 - e.g. Healthcare workers, people who have been in hospital
- · Possible to decolonise
- Only problematic when causes infection
 - Cellulitis, wound/ ulcer infections, line infections
 - Bone/ joint infections

MRSA: WHERE TO FIND THEM ...

MRSA screening swabs of nose and groin

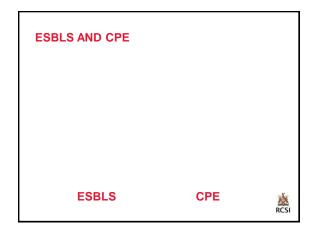

- Also swab ulcers, PEG sites etc.
- Usually charcoal swabs (for culture)
- RCSI

RCSI

VRE: VANCOMYCIN-RESISTANT ENTEROCOCCI

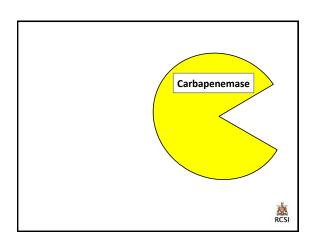
- · Live in the bowel -
- · Many hospitalised patients may be colonised
- Can't decolonise (bowel cannot be sterilised)
- Can survive for long periods on surfaces so cleaning of bed spaces and toilet facilities very important

ESBL: EXTENDED-SPECTRUM BETA-LACTAMASE


- Enzymes carried by Gram-negative bowel organisms (e.g. *E.coli, Klebsiella* spp.) which make them resistant to:
 - Cephalosporin antibiotics (e.g. "Rocephin")
 - Sometimes co-amoxiclav ("Augmentin")
 - Sometimes piperacillin-tazobactam ("Tazocin")
- · Live in the bowel
- Can't decolonise (bowel cannot be sterilised)


RCSI

Cause UTIs, intra-abdominal infections



CPE: CARBAPENEMASE-PRODUCING ENTEROBACTERALES

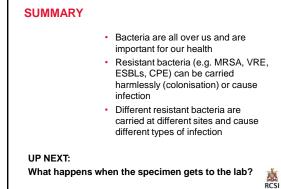
 Gram-negative bowel organisms (e.g. *E.coli, Klebsiella* spp.) that produce enzymes that make them resistant to meropenem (our "last-resort" antibiotic)

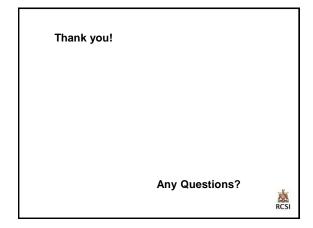
- · Live in the bowel
- Can't decolonise (bowel cannot be sterilised)
- Only problematic when they cause infection
 - E.g. UTIs, intra-abdominal infection

AGENT	RESULT	
Amoxicillin	RESISTANT	
Co-amoxiclav	RESISTANT	
Cefuroxime	RESISTANT	
Cefotaxime	RESISTANT	
Ceftazidime	RESISTANT	
Piperacillin/Tazobactam	RESISTANT	
Aztreonam	RESISTANT	
Meropenem	RESISTANT	
Ciprofloxacin	RESISTANT	
Gentamicin	RESISTANT	
Tobramycin	RESISTANT	
Amikacin	RESISTANT	
Tigecycline	RESISTANT	
Colistin	SUSCEPTIBLE	

CPE: CARBAPENEMASE-PRODUCING ENTEROBACTERALES

- Becoming more widespread
- A big problem
- If a patient gets a CPE infection
 - May be no suitable antibiotic to treat them with
 - High mortality


CPE: WHERE TO FIND THEM CPE screening swab (rectal or stoma) Usually charcoal swab for culture Some labs now using molecular methods "Round and round until it's brown..."



RESISTANT BACTERIA IN CLINICAL SPECIMENS

Sometimes we find resistant organisms when we weren't looking for them

- Can be picked up in any specimen (urine, ulcer swab etc.)
- E.g. CPE in a catheter urine
- Doesn't always indicate **infection**; depends on the clinical picture- how is the patient?

